New articles on animal research
News on the topic
Hidden brain waves as triggers for post-seizure wandering
People with temporal lobe epilepsy in particular often wander around aimlessly and unconsciously after a seizure. Researchers at the University Hospital Bonn (UKB), the University of Bonn, and the German Center for Neurodegenerative Diseases (DZNE) have identified a neurobiological mechanism that could be responsible for this so-called post-ictal wandering and potentially other postictal symptoms. According to their hypothesis, epileptic seizures are not directly responsible for post-ictal symptoms, but rather seizure-associated depolarization waves, also known as spreading depolarization (SD). The results of the studies have now been published in the journal Science Translational Medicine.
Fat cells under false command
Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
Improved electrical conduction in the lesioned heart
During a heart attack, heart muscle cells die and are replaced by scar tissue. This delays the electrical conduction in the heart and favours the onset of cardiac arrhythmia. To reduce this potentially life-threatening complication, researchers at the University Hospital Bonn (UKB) and the University of Bonn intended to partially restore electrical conduction in the scar tissue. To this end, they developed a gene therapy in mice to enrich the gap junction protein connexin 43 in the scar area in order to improve electrical conduction. By this approach, the research team could significantly reduce the frequency of arrhythmia in lesioned hearts. The results are recently published in the Journal of Physiology.
Sensation through the legs: What flies do and don’t perceive when walking ...
How do insects perceive mechanical stress? This is a question of interest in many different fields including comparative morphology, neurobiology and robotics. A team led by Dr. Brian Saltin of the Bonn Institute of Organismic Biology has developed a computer model to study the fruit fly Drosophila, focusing on the creature’s tiny sensory organs for perceiving mechanical stress located near its leg joints. Using this newly developed model, the researchers have been able to study how the position, orientation and material properties of these sensors influence their function. Simulations run have shown how in normal forward walking these sensory organs appear not to be activated solely through the force of footfall. The findings have now been published in the Journal of the Royal Society Interface.
Immune Cells Drive Congenital Paralysis Disease
Patients with spastic paraplegia type 15 develop movement disorders during adolescence that may ultimately require the use of a wheelchair. In the early stages of this rare hereditary disease the brain appears to play a major role by over-activating the immune system, as shown by a recent study published in the Journal of Experimental Medicine. The study was led by researchers at the University of Bonn and the German Center for Neurodegenerative Diseases (DZNE). These findings could also be relevant for Alzheimer's disease and other neurodegenerative conditions.
New Bioactive Compound for Difficult-to-Treat Allergies
Irritable bowel syndrome, chronic itching, asthma and migraine are in many cases hard-to-treat conditions. They have in common that they are triggered by an excessive immune response—which in severe cases can be life-threatening. A team of researchers led by the University of Bonn has now identified a promising bioactive compound that could effectively reduce symptoms and slash fatality risk. The compound blocks a receptor on certain defense cells, thus preventing a derailed immune response. The study findings have been published in the journal Signal Transduction and Targeted Therapy.
Study on gene regulation with surprising results
Some sequences in the genome cause genes to be switched on or off. Until now, each of these gene switches, or so-called enhancers, was thought to have its own place on the DNA. Different enhancers are therefore separated from each other, even if they control the same gene, and switch it on in different parts of the body. A recent study from the University of Bonn and the LMU Munich challenges this idea. The findings are also important because gene switches are thought to play a central role in evolution. The study has been published in the journal Science Advances.
Anti-ageing and increased mental capacity through cannabis
A low-dose long-term administration of cannabis can not only reverse aging processes in the brain, but also has an anti-aging effect. Researchers from the University Hospital Bonn (UKB) and the University of Bonn together with a team from Hebrew University (Israel) have now been able to show this in mice. They found the key to this in the protein switch mTOR, whose signal strength has an influence on cognitive performance and metabolic processes in the entire organism. The results are now presented in the journal "ACS Pharmacology & Translation Science".
Ointment with DNA molecules combats allergic contact dermatitis
Researchers at the University of Bonn have isolated a DNA molecule that is suitable for combating allergic contact dermatitis in mice. What is known as an aptamer binds to certain immune system messenger substances, rendering them ineffective. This even works if the active ingredient is applied to the skin in the form of an ointment. The working groups involved hope that aptamer creams such as this could also be suitable for treating other skin conditions. The results have now been published in the journal Molecular Therapies - Nucleic Acids.
New insights into our immune system
Dendritic cells play an important role in setting the course of our immune system. However, what determines their heterogeneity and functional specialization is still not sufficiently understood. An international collaboration consisting of researchers from the University Hospital Bonn (UKB), the University of Bonn and the Technical University of Denmark, among others, has investigated the role of the transcription factor Bcl6 in dendritic cells in a mouse model and discovered that a subgroup is highly dependent on this protein. The findings contribute to a better understanding of immunological processes during infections, vaccinations, allergies and autoimmunity. The results have now been published in the renowned scientific journal "Nature Communications".
Breakthrough in brown fat research
Researchers from the University of Southern Denmark, the Novo Nordisk Center for Adipocyte Signaling (SDU), the University of Bonn and the University Hospital Bonn (UKB) have found a protein that is responsible for turning off brown fat activity. This new discovery could lead to a promising strategy for safely activating brown fat and tackling obesity and related health problems. The results of the study have now been published in the journal „Nature Metabolism“.
How the Immune System Learns from Harmless Particles
Our lungs are bombarded by all manner of different particles every single day. Whilst some are perfectly safe for us, others—known as pathogens—have the potential to make us ill. The immune system trains its response whenever it encounters such a pathogen. Yet researchers at the University of Bonn have now shown that even harmless particles help to improve the immune response and have published their results in the journal “Nature Immunology.”
How immune cells communicate to fight viruses
Chemokines are signalling proteins that orchestrate the interaction of immune cells against pathogens and tumours. To understand this complex network, various techniques have been developed to identify chemokine-producing cells. However, it has not yet been possible to determine which cells react to these chemokines. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have developed a new class of genetically modified mice that enables the simultaneous identification of chemokine producers and sensors. Using the chemokine Ccl3 as a “proof of principle”, they discovered that its function in the immune defence against viruses is different than had been previously assumed. Their results have now been published in the "Journal of Experimental Medicine".
Navigation software supports kidney research
Many kidney diseases are manifested by protein in the urine. However, until now it was not possible to determine whether the protein excretion is caused by only a few, but severely damaged, or by many moderately damaged of the millions of small kidney filters, known as glomeruli. Researchers at the University Hospital Bonn, in cooperation with mathematicians from the University of Bonn, have developed a new computer method to clarify this question experimentally. The results of their work have now been published as an article in press in the leading kidney research journal "Kidney International".
New findings on the immune system
T follicular helper cells (Tfh) are essential for strong antibody-mediated reactions of our immune system during infections and vaccinations. However, if they get out of control, this can cause diseases such as autoimmunity, allergies or cancer. Researchers from the University Hospital Bonn (UKB) and the Cluster of Excellence ImmunoSensation2 at the University of Bonn investigated the underlying mechanisms of Tfh cell development in a mouse model and thus decoded their internal networking. They hope that this will lead to new strategies for the development of highly effective vaccines and new therapies to combat various diseases. The results have now been published in the renowned journal "Science Immunology".
Zebrafish Navigate to Find Their Comfortable Temperature
Zebrafish are smaller than your little finger, with a brain no more than half the size of a pinhead. Yet these animals possess an efficient navigation system that enables them to find their way back to spots in the water where the temperature suits them. This has been revealed in a recent study by the University of Bonn and University Hospital Bonn together with the Technical University of Munich (TUM), whose findings have been published in the journal “Current Biology.”
Main regulator for the body`s oven discovered
Brown fat cells convert energy into heat – a key to eliminating unwanted fat deposits. In addition, they also protect against cardiovascular diseases. Researchers from the University Hospital Bonn (UKB) and the Transdisciplinary Research Area "Life & Health" at the University of Bonn have now identified the protein EPAC1 as a new pharmacological target to increase brown fat mass and activity. The long-term aim is to find medicines that support weight loss. The results of the study have now been published in the renowned journal "Nature Cell Biology".
Malfunction in spermatogenesis
For successful fertilization, sperm should move forward rapidly and be shaped correctly. The unique structure of the sperm cells forms during spermiogenesis. Now, researchers from the University Hospital Bonn (UKB) and the Transdisciplinary Research Unit "Life & Health" at the University of Bonn have found that fertility problems in both mice and humans can be caused by loss of so-called cylicines. This causes defects in head and tail structure of sperm. The results of the study have now been published in the scientific journal "eLife".
Possible cause of male infertility
Mature spermatozoa are characterized by an head, midpiece and a long tail for locomotion. Now, researchers from the University Hospital Bonn (UKB) and the Transdisciplinary Research Area "Life & Health" at the University of Bonn have found that a loss of the structural protein ACTL7B blocks spermatogenesis in male mice. The cells can no longer develop their characteristic shape and remain in a rather round form. The animals are infertile. The results of the study have now been published in the scientific journal "Development".
The ego-consciousness of the feathered fowl?
Scrape, cluck, lay eggs - that's it? Anyone involved in chicken farming knows that the animals are capable of much more. Researchers at the Universities of Bonn and Bochum, working with the MSH Medical School Hamburg, have observed clues that roosters might be able to identify themselves in a mirror. Furthermore, the setup of the experiment matters in whether the behavior actually occurs or not - an insight that could well be of significance for other animals species too. The study has now been published in the journal PLOS ONE.
“Animal Welfare is Our Top Priority”
On the occasion of World Day for Laboratory Animals, researchers of the 3R Competence Network NRW explain how animal experimentation can be improved and why it is still necessary.
New compound inhibits influenza virus replication
Viruses use the molecular repertoire of the host cell to replicate. Researchers from the Cluster of Excellence ImmunoSensation2 at the University of Bonn, together with Japanese researchers, want to exploit this for the treatment of influenza. The team led by Prof. Hiroki Kato from the Institute of Cardiovascular Immunology at the University Hospital Bonn has identified a compound that inhibits the body's own methyltransferase MTr1, thereby limiting the replication of influenza viruses. The compound proved effective in lung tissue preparations and mouse studies and showed synergistic effects with already approved influenza drugs. The study is now published in the journal Science. 
Glial cells help memory along
There are two fundamentally different cell types in the brain, neurons and glial cells. The latter, for example, insulate the "wiring" of nerve cells or guarantee optimal working conditions for them. A new study led by the University of Bonn has now discovered another function in rodents: The results suggest that a certain type of glial cell plays an important role in spatial learning. The German Center for Neurodegenerative Diseases (DZNE) was involved in the work. The results have now been published in the journal Nature Communications.
How nerve and vascular cells coordinate their growth
Nerve cells need a lot of energy and oxygen. They receive both through the blood. This is why nerve tissue is usually crisscrossed by a large number of blood vessels. But what prevents neurons and vascular cells from getting in each other's way as they grow? Researchers at the Universities of Heidelberg and Bonn, together with international partners, have identified a mechanism that takes care of this. The results have now appeared in the journal Neuron. 
Gene plays important role in embryonic development
An international study led by the medical Faculty of the University of Bonn has identified a gene that plays an important role in the development of the human embryo. If it is altered, malformations of various organ systems can result. The gene emerged very early in evolution. It also exists in zebrafish, for example, and performs a similar function there. The results have now been published in the Journal of Medical Genetics.
DNA guardians out of control
Our own immune system can become the enemy when mechanisms that are actually protective get out of control. In ANCA-associated vasculitis, excessive inflammatory reactions lead to pulmonary hemorrhages that can be fatal if left untreated. Researchers at the University of Bonn, together with colleagues from Germany, the Netherlands, Switzerland and England, have deciphered a mechanism in mice and patients that leads to the severe disease. The results are now published in the Journal of Experimental Medicine.
Many paths are open to neurons born early
When it comes to royalty, things are clear: The monarch's first child inherits the crown. Siblings born later must make do with a less glamorous profession. This is quite similar for some nerve cells in the brain. In their case, it is not the order in which they are born, but at least the time of their emergence that determines their further career. This is shown by a recent study by the University of Bonn. The results were obtained in mice; the extent to which they can be transferred to humans is therefore still uncertain. They have now been published in the journal eNeuro.
Genetic defect leads to motor disorders in flies
Researchers at the Universities of Bonn and Osnabrück have discovered a protein whose defect causes motor disorders in flies. The protein had also previously been found in human patients with Parkinson's disease. So far, however, it was not known what function it has in the cell. The study now provides an answer to this question. The work, in which the University Hospital Aachen was also involved, has now been published in the journal Science Advances.
Research with a bite
How hard can insects bite? Having a strong chewing apparatus makes it easier to crush harder food and to succeed in fights with enemies. Biologists at the University of Bonn now present a mobile system (forceX) for measuring the bite forces of small animals, along with the software forceR to evaluate the data. This allows to understand how bite forces, for example of insects, evolved. The final version is now published in the journal "Methods in Ecology and Evolution".
Study shows: Fish can calculate
Cichlids and stingrays can perform simple addition and subtraction in the number range of one to five. This has been shown in a recent study by the University of Bonn, which has now been published in the journal Scientific Reports. It is not known what the animals need their mathematical abilities for.
Wird geladen