Dramatic loss of food plants for insects

Just a few weeks ago, everyone was talking about plummeting insect numbers. Academic discourse focused on three main causes: the destruction of habitats, pesticides in agriculture and the decline of food plants for insects. A team of researchers from the Universities of Bonn and Zurich and the Swiss Federal Institute for Forest, Snow and Landscape Research WSL have now demonstrated for the first time that the diversity of food plants for insects in the canton of Zurich has dramatically decreased over the past 100 years or so. This means that bees, flies and butterflies are increasingly deprived of their food base. The study, which is representative for all of Central Europe, has now been published in the journal "Ecological Applications".

A "corset" for the enzyme structure

The structure of enzymes determines how they control vital processes such as digestion or immune response. This is because the protein compounds are not rigid, but can change their shape through movable "hinges". The shape of enzymes can depend on whether their structure is measured in the test tube or in the living cell. This is what physicochemists at the University of Bonn discovered about YopO, an enzyme of the plague pathogen. This fundamental result, which has now been published in the journal "Angewandte Chemie", is potentially also of interest for drug research.

Digital support formats for international students and doctoral students

After the corona-related state of emergency has turned our professional and personal lives upside down since mid-March, we’re now largely back in a new everyday life: This also applies to our counseling service for international students at the University of Bonn. It is possible for us to offer digital advice and support to remain available to you. Every day we experience new challenges, for example the data protection law, but also at the same time friendly support from colleagues that allows us to find creative solutions together.

Catalyst enables reactions with the help of green light

For the first time, chemists at the University of Bonn and Lehigh University in Bethlehem (USA) have developed a titanium catalyst that makes light usable for selective chemical reactions. It provides a cost-effective and non-toxic alternative to the ruthenium and iridium catalysts used so far, which are based on very expensive and toxic metals. The new catalyst can be used to produce highly selective chemical products that can provide the basis for antiviral drugs or luminescent dyes, for example. The results have been published in the international edition of the journal "Angewandte Chemie".

Stronger together: in the fight against COVID-19, research institutions around the globe are joining forces.

Many questions surrounding the novel coronavirus remain unanswered. But one thing is already clear: the pathogen affects us all, be it in China, Germany, South Africa or the US. Fighting the disease is increasingly carried out at international level. The University of Bonn is part of numerous international networks that operate on very different levels, striving to slow down the wave of infection.

Low-income earners suffer most from the COVID-19 crisis

Home office at full pay is not an option for all employees hit by the coronavirus crisis. To analyze changes in work arrangements during the pandemic, a team of economists from the Cluster of Excellence ECONtribute in cooperation with the Institute of Labor Economics (IZA) surveyed around 5,500 individuals in the Netherlands from March 20-31. The results show that high-skilled workers spend more time in the home office, while less-skilled workers are more likely to work reduced hours or lose their jobs.

Wird geladen