Acetals are important chemical compounds that are used, for example, in the production of certain medical agents. A new method now makes their synthesis easier and more environmentally friendly. Chemists at the University of Bonn have developed and optimized the sustainable catalytic process. State-of-the-art computer simulations were also used. The reaction is based on a mechanism that frequently occurs in nature, but has rarely been used in chemical synthesis up to now. The results are published in the journal Angewandte Chemie.
According to current studies, the COVID-19 disease which is caused by the SARS-CoV-2 coronavirus comprises at least five different variants. These differ in how the immune system responds to the infection. Researchers from the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, together with other experts from Germany, Greece and the Netherlands, present these findings in the scientific journal “Genome Medicine”. Their results may help to improve the treatment of the disease.
Filariae, slender but sometimes up to 70 centimeters long nematodes, can set up residence in their host quite tenaciously and cause serious infectious diseases in the tropics. The tiny larvae of the worms are usually transmitted from person to person by mosquitoes, which pick up the larvae from the blood or subcutaneous tissue when they bite and deposit them in the vessels or tissues of their next victim. Researchers led by the University of Bonn have now investigated a mechanism by which the immune system attacks the filariae. Certain immune cells, the eosinophil granulocytes, release DNA that forms a kind of web around the larvae and traps them. The researchers also identified which protein "turns on" the mechanism, known as the Dectin-1 receptor. The study has been published in the journal Cell Reports.
This year's elections for the Student Parliament (SP) and university committees are being held for the first time as a mail-only election due to the Corona pandemic. Around 37,700 students are called upon to cast their vote. The University of Bonn has sent an according number of letters with the election documents. Voting is possible until next Thursday, January 21.
Foraging humans find food, reproduce, share parenting, and even organize their social groups in similar ways as surrounding mammal and bird species, depending on where they live in the world, new research has found. A new study by researchers from the University of Bonn, the Max Planck Institute for Evolutionary Anthropology and the University of Bristol shows that environmental factors exert an overriding influence on how foraging human populations and non-human species behave, despite their very different backgrounds. The study has been published in the journal “Science”.
An international research team led by the University of Bonn has identified and further developed novel antibody fragments against the SARS coronavirus-2. These "nanobodies" are much smaller than the classic antibodies used to treat US President Donald Trump, for example. They therefore penetrate the tissue better and can be produced more easily in larger quantities. The researchers at the University Hospital Bonn have also combined the nanobodies into potentially particularly effective molecules. These attack different parts of the virus simultaneously. The approach could prevent the pathogen from evading the active agent through mutations. The results are published in the journal Science.
For some years, an active substance from the leaves of an ornamental plant has been regarded as a possible forerunner of a new group of potent drugs. So far, however, it has been very laborious to manufacture it in large quantities. That could now change: Researchers at the University of Bonn have identified a bacterium that produces the substance and can also be easily cultivated in the laboratory. The results are published in the journal Nature Communications.
A tiny component is essential for sexual reproduction - the sperm tail. It is an example for a flagellum. Flagella and cilia are small antenna-like structures protruding from most cells in our body. In order for a sperm to travel to and fertilize the egg, its flagellum has to beat in a very precise and coordinated manner to allow progressive swimming of the sperm. Researchers at the Institut Curie in Paris, the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, the research center caesar in Bonn together with Jan Hansen from the Institute of Innate Immunity at the University of Bonn and other colleagues from Paris and Milan now show that one particular enzymatic modification of the protein tubulin is essential to keep sperm swimming in a straight line. These findings imply that a perturbation of this modification could underlie some forms of male infertility in humans. The study appears in the journal Science.