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*an extra 2 billion people will require a doubling of food production

2050



How will we achieve
food (and water)
security?
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e IS no silver bullet




Cassman and Grassini. (2020) “A global perspective on sustainable intensification research” Nature Sustainability
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A Digital Transformation?
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agriculture employs > 1.3 billion people

T
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* and is a $2.4 trillion dollar industry

— e #1 contributor to landfill (up to 1/3 of food is wasted)

o #2 largest emitter of GHGs

H ‘ o————o #1 water user (up to 70% of freshwater)

Figure adapted from bigdata.cgiar.org/inspire/

e information poor, but increasingly data rich



Hydrol. Earth Syst. Sci., 21, 3879-3914, 2017
https://doi.org/10.5194/hess-21-3879-2017

© Author(s) 2017. This work is distributed under
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Abstract. In just the past 5 years, the field of Earth obser-
vation has progressed beyond the offerings of conventional
space-agency-based platforms to include a plethora of sens-
ing opportunities afforded by CubeSats, unmanned aerial ve-
hicles (UAVs), and smartphone technologies that are being
embraced by both for-profit companies and individual re-
searchers. Over the previous decades, space azency efforts

With these advances come new space-borne measurements,
such as real-time high-definition video for tracking air pol-
lution, storm-cell development. flood propagation, precipi-
tation monitoring, or even for constructing digital surfaces
using structure-from-motion techniques. Closer to the sur-
face, measurements from small unmanned drones and teth-
ered balloons have mapped snow depths, floods, and esti-
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Cubesats (10x10x 11.35 cm)

Affordable and replaceable: -l-
- COTS, designed for failure o n e .
Economies of scale:
-1 at $100M or 100 at $1M







CESTEM HLS reference sampling and calibration e
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Tracking crop health and condition from space
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Leaf Area Index
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Crop-water use retrievals: highest ever resolution from space
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McCabe et al. (2017) “CubeSats in hydrology: ultrahigh resolution insights into vegetation dynamics and terrestrial evaporation” Water Resources Research



Big-data: every field, everywhere, all the time
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Lopez et al. (2020), “Mapping groundwater for irrigated agriculture: big data, inverse modeling and a satellite-model fusion approach “, HESS



Groundwater abstraction (MCM)
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Hydrol. Earth Syst. Sci., 24, 5251-5277, 2020
https://doi.org/10.5194/hess-24-5251-2020

© Author(s) 2020. This work is distributed under
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Mapping groundwater abstractions from irrigated agriculture:
big data, inverse modeling, and a satellite—-model fusion approach
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Abstract. The agricultural sector in Saudi Arabia has wit-
nessed rapid growth in both production and area under cul-
tivation over the last few decades. This has prompted some
concern over the state and future availability of fossil ground-
water resources, which have been used to drive this ex-
pansion. Large-scale studies using satellite gravimetric data
show a declining trend over this region. However, water man-
agement agencies require much more detailed information
on both the spatial distribution of agricultural fields and their
varying levels of water exploitation through time than coarse
gravimetric data can provide. Relying on self-reporting from
farm operators or sporadic data collection campaigns to ob-
tain needed information are not feasible options, nor do they
allow for retrospective assessments. In this work, a water ac-
counting framework that combines satellite data, 0-

BLE) model was then adapted to use satellite-based vegeta-
tion and related surface variables and forced with a 3km re-
analysis dataset from the Weather Research and Forecasting
(WRF) model. Groundwater abstraction rates were then in-
ferred by estimating the irrigation supplied to each individual
center pivot, which was determined via an optimization ap-
proach that considered CABLE-based estimates of evapora-
tion and TSEB-based satellite estimates. The framework was
applied over two study regions in Saudi Arabia: a small-scale
experimental facility of around 40 center pivots in Al Kharj
that was used for an initial evaluation and a much larger agri-
cultural region in Al Jawf province comprising more than
5000 individual fields across an area exceeding 2500km?.
Total groundwater abstraction for the year 2015 in Al Jawf

logical output from weather prediction models. and a modi-
fied land surface hydrology model was developed to provide
information on both irigated crop water use and groundwa-
ter abstraction rates. Results from the local scale, compris-
ing several thousand individual center-pivot fields, were then
used to guantify the regional-scale response. To do this, a
semi-automated approach for the delineation of center-pivot
fields using a multi poral statistical analysis of Landsat
8 data was developed. Next, actual crop evaporation rates
were estimated using a two-source energy balance (TSEB)
model driven by leaf area index, land surface temperature,
and albedo, all of which were derived from Landsat 8. The
Community Atmosphere Biosphere Land Exchange (CA-

was esti 1 at approximately 5.5 billion cubic meters, far
exceeding any recharge to the groundwater system and fur-
ther highlighting the need for a comprehensive water man-
agement strategy. Overall, this novel data-model fusion ap-
proach facilitates the compilation of national-scale ground-
water abstractions while also detailing field-scale informa-
tion that allows both farmers and water management agen-
cies to make informed water accounting decisions across
multiple spatial and temporal scales.



J:: i Y A g0 A Y )
Stress signals oo o5 s = Al Jawf:~5000+ pivots

M all|oc Ellal) Gealy
(‘\/(%,w 9 Aglall

King Abdullah University of
\ Scienceuangl Jechnology

Early detection




Big-data: phenotyping — from the lab to the field

Field trials can differentiate between
hundreds of plant accessions
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Combine hyperspectral, optical and
thermal sensing with big data analytics
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Johansen et al. (2019), UAV-based phenotyping using morphometric and spectral analysis can quantify responses of wild tomato...”, Frontiers Plant Science



First phase is “straightforward”: link derived indices with observed
features (yield, yield components, plant performance measurements etc.)
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Johansen et al. (2020) “Predicting biomass and yield in a tomato phenotyping experiment using UAV imagery and random forest”, Frontiers in Artificial Intelligence



Second phase is HARD: requires linking the phenotype to the genotype
via plant sequences, population structures, GWAS etc...all big-data!!

Crop sequence
offers a taste of the
future rces3oo 307
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Data Driven Agriculture
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