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Add (human) self-awareness to Earth’s self-regulation for sustainability

» We don’t know the best solution in
advance, but can improve sensors
and learn and rectify (sensing for
sustainability)

» Self-awareness: track the lag time
between environmental changes,
versus impacts and reactions by
humans/societies

> Climate-smart and sustainable land
use

SUSTAINABILITY

Gaia 2.0

Could humans add some
level of self-awareness

‘f,;// to Earth’s self-regulation?
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Overview

1. Recent progress in tracking global land dynamics
2. Evolving technologies and approaches:
 Near-real time assessments
 New sensing opportunities
« Linking data science and (process) modelling
3. Towards sustainability: examples and demonstrations
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Copernicus Global Land Cover Monitoring Service

Training data collection system Land cover data system Independent validation system
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» Annual (since 2015 .
( ) https://land.copernicus.eu/global/products/Ic

> G |O ba l A systematic service providing dynamic, yearly, user-oriented global land cover maps from 2015
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» Land cover classes

and fractions
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Discrete Map (21 classes) 10 Continuous Cover Fractions (0-100%) Quality Indicators

(") demonstration over Africa, global maps under release test
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Permanent water is derived from GSW (Pekel et al.)
Built-up is derived from WSF (Marconcini et al.)

e https://blog.vito.be/remotesensing/annual-global-land-cover-maps



https://land.copernicus.eu/global/products/lc
https://www.mdpi.com/2072-4292/12/6/1044/htm
https://blog.vito.be/remotesensing/annual-global-land-cover-maps

Global land cover/use
change 1960-2015

> 4-times more change
> Phases of acceleration

and deceleration

Winkler et al., (subm.)
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Space-based global biomass monitoring

Global plot reference database (~109.000)
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http://cci.esa.int/biomass

NDVI

ACF(1)

Temporal autocorrelation ~ resilience
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Verbesselt, J. et al. Remotely
sensed resilience of tropical
forests. Nat. Clim. Chang. (2016).
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Effect of MAP on temporal autocorrelation
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Overview

1. Recent progress in tracking global land dynamics
2. Evolving technologies and approaches:

« Near-real time assessments

- New sensing opportunities

« Linking data science and (process) modelling
3. Towards sustainability: examples and demonstrations
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Dense time-series for near-real time detection
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Reiche et al., 2018, RSE, 204, 147-161 1



Selective logging
pattern in DRC based
on weekly forest
disturbance alerts

Reiche et al. (in rev.), ERL
WAGENINGEN
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Sentinel-1 based weekly alerts, period Jan. 2019 — Sept. 2020



Vegetation structure monitoring and characterization

www.wageningenUR.nl/lidar


http://www.wageningenur.nl/lidar

Biomass and Height Estimation of Crops and Trees
Using UAV-Based Lidar
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http://www.wageningenur.nl/uarsf
https://www.npec.nl/
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Biomass and Height Estimation of Different Crops
and Trees Using UAV-Based Lidar

1. Ryegrass biomass estimation (de Alckmin et
al., 2020, Precision agriculture)

2. Evaluating plant-soil feedback in ag-systems:
(Nuijten, et al. 2019, Drones)

3. Modeling woody volume and biomass of trees
Sugar beet from drone-based LIDAR (Brede et al., 2019
height map RSE)

4. Large-area palm species mapping in tropical
forests (Tagle-Casapia et al., 2020, RS)



Land use monitoring

Accuracies of land use classification (in
percentages) of four deep learning methods for
continental and pan-tropical scale.

- LSCP: large-scale/commercial cropland

- Pasture

- Mining

- SSCP-small-scale cropland

- Other LWTC-Other land with tree cover

- Tree crops

- OA- for overall accuracy.

In brackets are the percentages of each FLU class
over each continent.
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Test accuracy %
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Linking data science and physical/process modelling

» Evolution of deep learning and computer vision applied to large EO
archives

» Linking data science/Al approaches and physical/process modeling:

>
>
>

>

>

>
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Machine “learning” -> limited capability for extrapolating
Trying to overcome the black box (“interpretable/explainable AI")

Models vs. data: limitations in current process modeling adopting
EO data streams and fully capture complexity

Little concrete examples of hybrid modeling, physics-aware
machine learning (Reichstein et al., 2018, Nature)

Use error function of CNNs to avoid physically meaningless
outcomes (thematically, temporally)

Linked physical simulations and inclusion in probabilities



Overview

1. Recent progress in tracking global land dynamics
2. Evolving technologies and approaches:
 Near-real time assessments
 New sensing opportunities
« Linking data science and (process) modelling
3. Towards sustainability: examples and demonstrations
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Differentiated observations needs along the policy cycle

> Awareness/problem definitions:

Awareness Problem » Land change trends/GHGs
Raising Definition > IPCC, IPBES etc.
> Policy options/activities:
B . > Nat. determined contributions (NDCs)
Rt 10N > Activities, hotspots for mitigation/adaptation
of Options

> Implementation:
implementation _Policy > Local data supporting I.and management
Selection » Regular progress tracking, transparency
> Evaluation/performance:
» National: GHG inventories, SDG reports
» Global: UNFCCC stocktake (2023+)
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Towards data-driven, spatially explicit GHG inventories

Integration of key data sources:

« Forest change

« Drivers of deforestation

» Forest plantations

« Biomass stocks

« Biomass burning/burnt area
- Peatlands, Mangroves

« Soil carbon

Combine data to provide forest
related gross emissions,
removals, and net GHG from
2001 annually at 30 m
resolution, building upon IPCC
GPG reporting framework
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Net forest
greenouse gas flux

Mt CO.e yr' (2001-2019)

- 0.17 F
5 \\
- -0.087

Forest-related net GHG (LULUCF) flux from 2001 to 2019 (Harris et al., in rev.)



Climate Smart Land Use options: Lifestock sector in Kenia

Mitigation scenario: Brandt et al., 2020. GCB
« Increase milk yield

« Feed intensification (quality, conservation)

« Reduce yield gap

» Reduce forest grazing -> create a forest sink
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Data sources:

» Lifestock data

« Forest remote sensing
 Farm surveys

Feed intensification strategies:

Fo - Forage quality: Napier grass
Fe - Feed conservation: maize

Changes of combined GHG emissions (%)

silage
10 Co - Concentrate supplementation:
5 dairy meal
0= Intensification level:
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e relative increases in milk production



Radar-based weekly forest change
alerts, Sumatra based on open-
source data and methods

Sentinel 1
weekly forest
loss alerts

Reiche et al. 2018, RS



Coalition of ten major palm oil producers
collaborate on new, publicly available,
weekly radar-based forest monitoring
(RADD)

Sentinel-1
2019 TC loss

Tree cover loss
B natural forest
Ol plantations



https://www.wri.org/news/2019/10/release-palm-oil-industry-jointly-develop-radar-monitoring-technology-detect

Interactive/participatory monitoring: linking data to action

« Operational monitoring in Kafa Biosphere Reserve, Ethiopia in near-real time mode
since Oct. 2014

« System at national and local level in Peru incentivising indigenous communities to
protect forests

« Alert-driven monitoring for land cover/use mapping and sustainable oil palm
sourcing in Indonesia and Malaysia (https://landsense.eu/)

« PLOS-One collection of twelve research papers on case studies:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176897
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http://www.wageningenur.nl/cbm %



http://137.224.8.72/projects/kafa/
http://www.wur.nl/en/project/A-Community-based-interactive-monitoring-system-for-effective-REDD-implementation-in-Peru.htm
https://landsense.eu/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176897
http://www.wageningenur.nl/cbm
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Global Observation of Forest Cover and Land Dynamics

Land Cover

Project Office European Space Agency
Agence spatiale européenne
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World bank REDD+ monitoring training materials

» 14 modules (lectures, country examples, exercises)
» 3 Languages (English, French, Spanish)

» 30+ authors, regular updates incl. scientific synthesis
» Training the trainer workshops, webinars etc.

http://www.gofcgold.wur.nl/redd/Training materials.php

https://www.forestcarbonpartnership.org/redd-training-material-forest-monitoring
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http://www.gofcgold.wur.nl/redd/Training_materials.php
https://www.forestcarbonpartnership.org/redd-training-material-forest-monitoring

Changes in country forest monitoring capacities (FAO FRA 2020)

(1b) Remote sensmg capacity 2020 (2b) NFI capamty 2020

-Low- Limited- Intermediate- Goodl:l Very good

(20) Capaclty changes 2005 2020

Increase: 1 |:| 2 - 3- 4 No change: 0
Decrease: -1

Nesha et al., 2020 (subm.)
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Continuous improvement in
the use of RS for area
change estimation (in
particular for Africa with room
for improvements)

NFI data improvements
widespread in tropics but also
Europe

Almost no decline in capacity
North/south capacity

differences turn into
methodological differences



Differentiated observations needs along the policy cycle

> Awareness/problem definitions:

Awareness Problem » Land change trends/GHGs
Raising Definition > IPCC, IPBES etc.
> Policy options/activities:
B . > Nat. determined contributions (NDCs)
Rt 10N > Activities, hotspots for mitigation/adaptation
of Options

> Implementation:
implementation _Policy > Local data supporting I.and management
Selection » Regular progress tracking, transparency
> Evaluation/performance:
» National: GHG inventories, SDG reports
» Global: UNFCCC stocktake (2023+)
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Sensing for sustainability: summary I

>

Y VYV

Availability of dense/long archives of satellite, time-series analysis
algorithms, and EO-big data analytics

Global data with local relevance: dynamics, different types and speed
of changes

Improved linking of dynamic information to human actions

Terrestrial and drone-based systematic observations: enhance rapid
local data and physical underpinnings

New data science/Al opportunities need to be linked with process
understanding/modeling

Europe is leading the way for the “golden age” of Earth Observations

EEEEEEEEEEEEEEEEEEE
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Sensing for sustainability: summary II

» Supporting sustainability:

» Differentiated observation support: problem - policy -
implementation - evaluation

» Sustainable supply chain monitoring

» Climate change mitigation and conservation (i.e. REDD+,
landscape restoration, nature-based solutions)

» Data driven underpinnings: forest/agriculture nexus
» Implementing and reporting of SDGs

» Enhancing transparency and “actionable” information as catalyst for
transformational change and local actions

» Sensor-system for a self-aware Earth

EEEEEEEEEEEEEEEEEEE
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