One
Nachricht suchen
 
Two
Nachrichtenbilder
Durch Anklicken der Miniaturansicht erhalten Sie ein größeres Vorschaubild. Ein Klick darauf öffnet die hochaufgelöste Version des Bildes, die Sie über einen Rechtsklick abspeichern können. Der Abdruck im Zusammenhang mit der Nachricht ist kostenlos, dabei ist der angegebene Bildautor zu nennen.
  • Lan_100111_frenzen_13.jpg
    Lan_100111_frenzen_13.jpg
    Prof. Frentzen (links) und Florian Schelle beobachten gespannt, wie der "Laser-Meißel" die quadratische Elfenbein-Probe bearbeitet. (c) Volker Lannert / Universität Bonn
  • Lan_100111_frenzen_8.jpg
    Lan_100111_frenzen_8.jpg
    Der Laserbohrer bei der Arbeit. (c) Volker Lannert / Universität Bonn
  • Lan_100111_frenzen_5.jpg
    Lan_100111_frenzen_5.jpg
    Der Laserbohrer bei der Arbeit. (c) Volker Lannert / Universität Bonn
Right click to download: Lan_100111_frenzen_13.jpg
Lan_100111_frenzen_13.jpg
Prof. Frentzen (links) und Florian Schelle beobachten gespannt, wie der "Laser-Meißel" die quadratische Elfenbein-Probe bearbeitet. (c) Volker Lannert / Universität Bonn
Right click to download: Lan_100111_frenzen_8.jpg
Lan_100111_frenzen_8.jpg
Der Laserbohrer bei der Arbeit. (c) Volker Lannert / Universität Bonn
Right click to download: Lan_100111_frenzen_5.jpg
Lan_100111_frenzen_5.jpg
Der Laserbohrer bei der Arbeit. (c) Volker Lannert / Universität Bonn
 
Sie sind hier: Startseite Pressemitteilungen Schmerzarme Kariesbehandlung mit dem Laserstrahl
Datum: 12.01.2011

Schmerzarme Kariesbehandlung mit dem Laserstrahl Bonner Wissenschaftler entwickeln neues Therapiesystem für Zahnärzte

Wissenschaftler der Universität Bonn entwickeln momentan mit Partnern aus Forschung und Industrie ein neuartiges Lasertherapiesystem. Das Gerät soll künftig eine nahezu schmerzfreie und sehr präzise Zahnbehandlung ermöglichen. 6,8 Millionen Euro stellt das BMBF für das Projekt zur Verfügung, das bereits seit 2009 läuft. Jetzt wurde ein erster Prototyp fertig gestellt, den Ärzte und Physiker in Bonn momentan testen – unter anderem an Stoßzähnen von Mammuts.

Der Zahn ist schon etwas älter, rund zehntausend Jahre, grob geschätzt. Und jetzt soll er sein erstes Loch bekommen. Energisch schiebt sich Florian Schelle die Schutzbrille über die Augen und schreitet zur Tat. Mit ein paar Drehungen am Rändelrad bewegt er die Elfenbeinscheibe in den Strahlengang des Lasers. Es puckert leise, ein helles Rauchwölkchen steigt auf und verschwindet im Absaugstutzen. „Pulverisiertes Zahnbein“, kommentiert der Physiker. Nach wenigen Sekunden ist alles vorbei: Der Laser hat eine würfelförmige Ausschachtung im Mammut-Stoßzahn erzeugt, kaum größer als ein paar Zuckerkristalle. So präzise würde das kein normaler Bohrer hinbekommen.

Der Strahl, mit dem die Bonner Forscher ihre Proben malträtieren, besteht vor allem aus Dunkelheit. 500.000 Mal pro Sekunde „tropft“ aus dem Laser ein kleines Lichtpaket, ähnlich wie Wasser aus einem Wasserhahn. Zweieinhalb Millimeter ist jeder Lichttropfen lang; zwischen zwei Tropfen liegen 600 Meter Finsternis. „Unser Laser arbeitet mit ultrakurzen Pulsen“, erklärt Florian Schelle. „Das ist auch der Grund, warum man mit ihm Löcher in Zähne bohren kann.“ Zwar ist die Gesamtenergie des Strahls gar nicht mal besonders hoch. In seinen „lichten Momenten“ bringt er jedoch für extrem kurze Zeit dieselbe Leistung wie ein modernes Windkraftwerk. Wenn so ein Lichttropfen mit geballter Wucht auf den Zahn aufschlägt, zerreißt er die Moleküle. Wärme und Vibrationen werden dabei kaum übertragen. Daher dürfte die Methode für Patienten so gut wie schmerzfrei sein.

Das Projekt MiLaDi (Minimalinvasive Laserablation und Diagnose von oralem Hartgewebe) könnte für die Zahnheilkunde eine kleine Revolution bedeuten. Und zwar nicht nur deshalb, weil der Lichtbohrer Patienten die Angst vor dem Zahnarztstuhl zu nehmen verspricht. „Wir können den Bohrer beispielsweise mit einem Diagnoselaser kombinieren“, erklärt Projektleiter Professor Dr. Matthias Frentzen von der Poliklinik für Parodontologie, Zahnerhaltung und präventive Zahnheilkunde. „So können wir während der Behandlung analysieren, ob wir uns noch in einem Kariesherd befinden oder schon im gesunden Gewebe – und den Bohrer rechtzeitig stoppen.“

Es gibt heute bereits Laser, die das können. Sie haben aber ein begrenztes Einsatzspektrum. Grund: Jedes Gewebe spricht auf eine andere Lichtfarbe an. Ein Laser, der besonders gut Karies entfernt, eignet sich daher nicht, um altes Füllungsmaterial abzutragen oder die Aussparung für ein Inlay in den Zahn zu präparieren. Nicht so ultrakurzgepulste Laser: Sie können aufgrund ihrer hohen Leistungsdichte beinahe jedes Material bearbeiten. „Wir wollen eine Art all-in-one-System bauen“, betont Frentzen.

Frei programmierbarer Bohrkopf

Ein weiterer Vorteil ist die hohe Präzision des Laserbohrers: Der Strahl ist nicht einmal halb so dick wie eine Wimper und damit streng genommen sogar zu fein, um damit vernünftig zu arbeiten. Die Forscher verpassen ihrem Bohrer daher einen virtuellen Bohrkopf: Sie lenken den Laser über zwei Spiegel so ab, dass er rasend schnell ein frei programmierbares Muster abfährt. „Sehen Sie hier“, sagt Florian Schelle und holt mit ein paar Mausklicks ein aus vielen parallelen Linien zusammengesetztes Quadrat auf den Bildschirm. „Das ist unser Bohrkopf: Der Lichtstrahl fährt die Linien nach und fräst so eine viereckige Aussparung in den Zahn.“ Durch Variation des Musters könnten die Forscher auch runde oder sogar herzförmige Löcher bohren – und das auf hundertstel Millimeter genau.

Fast 7 Millionen Euro stehen für das vom Bundesministerium für Bildung und Forschung geförderte Projekt zur Verfügung. Bis 2012 wird die Förderung zunächst laufen. Mehr als anderthalb Jahre haben die Bonner Wissenschaftler zusammen mit zwei Industrieunternehmen an der Entwicklung des Prototyps gearbeitet. Jetzt stehen weitere Forschungsarbeiten auf dem Programm: Welche Pulsparameter eignen sich für verschiedene Materialien am besten? Wirkt der Strahl tatsächlich nur lokal, oder schädigt er auch die Umgebung der behandelten Stelle? Werden beim Bohren gefährliche Substanzen frei?

„Elfenbein eignet sich aufgrund seiner dentinähnlichen Struktur besonders gut für unsere Experimente“, erläutert Frentzen. Stoßzähne von Elefanten sind verständlicherweise aus Artenschutzgründen tabu. Glücklicherweise birgt aber der sibirische Permafrost-Boden Mammut-Stoßzähne zuhauf. In Zukunft wird der Bedarf der Forscher nach den eiszeitlichen Funden aber wohl zurückgehen: Sie führen viele ihrer Tests inzwischen an Schweinekiefern durch. Die sind nicht nur leicht zu bekommen, sondern ihre Zähne ähneln auch frappierend denen des Menschen.

Weitere Informationen im Internet: http://www.miladi.uni-bonn.de


Kontakt:
Professor Dr. Matthias Frentzen
Poliklinik für Zahnerhaltung und Parodontologie der Universität Bonn
Telefon: 0228/287-22470
E-Mail: frentzen@uni-bonn.de